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In the real uniform approximation of the function xmy" by the space of bivariate
polynomials of total degree m +n - 1 on the unit square, the product of monic
univariate Chebyshev polynomials yields an optimal error. We exploit the
fundamental Noether's theorem of algebraic curves theory to give necessary and
sufficient conditions for unicity and to describe the set of optimal errors in case of
nonuniqueness. Then, we extend these results to the complex approximation on
biellipses. It turns out that the product of Chebyshev polynomials also provides an
optimal error and that the same kind of uniqueness conditions prevail in the
complex case. Yet, when nonuniqueness occurs, the characterization of the set of
optimal errors presents peculiarities, compared to the real problem. @ 1989 Academic

Press, Inc.

1. INTRODUCTION

The first part of this paper is concerned with the following approxima
tion problem.

Problem A. Given arbitrary integers m, n, with m + n ~ 1, find all
elements p* of the space Pm +" _ 1 of real bivariate polynomials of total
degree m + n - 1,

P m + n - I = {P(X, y) = L ahtxhyl; ahl ER ; h +l~m+n-l}

which best approximate the function I(x, y) = xmyn on the unit square
U = [ -1, + 1]2 in the uniform norm

III - p*1I =inf{1I1 - plI; PEPm+n-d,

where, for e = I - P, llell = max{ le(x, y)l; (x, y) E U}.

In the sequel, we assume m ~ n for obvious reasons of symmetry.
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Related problems have been considered in [4,5,9]. In the L1-norm,
Fromm [4] proved that the product Um(x) Un(y) of monic Chebyshev
polynomials of the second kind is the unique optimal error e*(x, y). In the
uniform norm and on the unit disk, Gearhart [5] solved the problem
with the polynomial e*(x, y)= Um(x) Un(y)+2- 4 Um_ 2(x) Un- 2(y) and
showed that uniqueness occurs only if n =0 or m = n = 1. Other optimal
errors e*(x, y) have been obtained by Reimer [9] by means of a generat
ing function.

In the uniform norm and on the unit square, Shapiro [15, p.36]
established the following result as corollary of a general theorem [14]
on approximation of product functions by the space of blending functions,
which has been recently extended by Haussmann and Zeller [7].

THEOREM 1. In the uniform approximation on the unit square, of the
function f(x, y) = xmyn out of the space

{
,,' h I. }Qm,n = p(x, y) = L... ahlx Y ,ahlE R ,

where 2:' denotes summation over any finite collection of pairs of integers
(h, l) with min(h - m, 1- n) < 0, one has

Ilf - pll ~ II I'm,nll

in which I'm n(x, y) is the product I'm(x) I'n(Y) of monic Chebyshev poly
nomials of the first kind.

Using divided difference methods, Reimer [10] proved this result by an
argument based upon extremal signatures [12, 15] for Qm no

Since Pm + n_1 is a subspace of Qm nand xmyn - I'm(x) Tn( y) belongs to
Pm+n-i> Theorem 1 implies that I'm(x) Tn(y) is on optimal error e*(x, y)
for Problem A. The polynomial xmyn - I'm(x) I'n( y) is even an element of
the subspace Rm,n of Pm + n_ l' defined by

Rm,n = {P(X, y) = L ahlxhy'; ah/ER; O~h ~m, 0 ~ I~ n, (h, I) =1= (m, n)},

and, as shown by Ehlich and Zeller [3], it is the unique best approxima
tion to xmyn out of Rm,n (see also [16] for related matters). In [13], Rivlin
has obtained the associated best strong uniqueness constant.

The first contribution of this paper is to provide unicity conditions for
Problem A, by exploiting Noether's theorem of algebraic plane curves
theory [19], and to describe the set of best approximations io case of noo-
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uniqueness. Then, we deal ~ith a natural extension to the complex case,
namely, Chebyshev polynomials on biellipses, that solve the following
approximation problem.

Problem B. Given the integers m, n with m + n ;;:: 1, m;;:: n, and the real
number p with 1 < P < 00, find all elements of the space Pm+n-l of
complex polynomials of degree m +n - 1

h+l~m+n-l,

which best approximate wmzn in the uniform norm on the biellipse Bp = E;
(and therefore on the closure of the inside of B p in view of the maximum
modulus theorem [6, p. 7], where Ep is the set of complex numbers defined
by

ItI=p.

For the sake of simplicity, we use the same symbols for spaces of real and
complex coefficient polynomials.

It is proved in a simple manner that the product of monic Chebyshev
polynomials of the first kind also yields an optimal error for Problem B
and that the same unicity conditions prevail in the complex case. Yet, when
nonuniqueness occurs, the characterization of the set of best approximants
presents peculiarities, compared with Problem A.

2. EXTREMAL SIGNATURES IN CHARACTERIZATION

AND UNIQUENESS THEOREMS

Our arguments rely on the notion of extremal signature, which will
be introduced for the complex Problem B, since it involves the real
approximation problem as a particular case. A function 8, defined on a
finite support D = {(Wi' z;); 1~ i ~ k} is called a signature if 18(Wi' z;)1 = I
for i = 1, 2, ..., k; 8' is a subsignature of 8 if it is the restriction of 8 to a
subset of D. The signature 8 is extremal for Pm + n_ 1 if there exist nonzero
complex numbers s; (1 ~ i ~ k), whose sgn s; = Is;I- 1 s; is the complex con
jugate value 8(w;, z;) of the signature at (w;, z;), so that

k

L s;p(w;,z;)=O,
;~l

s; =I- 0, sgn s;= 8(w;, z;), all PEPm + n - 1o (1)

where the coefficients s; are normalized by L; Is;1 = 1 with no loss of
generality. The extremal signature is said to be primitive if it has no proper
extremal subsignature. It is well known that extremal signatures are related
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to H-sets [17], but it must be stressed that all coefficients s; in (1) are sup
posed to be nonzero, as required in Theorem 3. In fact, primitive extremal
signatures are exact analogues of minimal H-sets.

Characterization theorems can be simply stated in terms of extremal
signatures [10, 14].

THEOREM 2. The polynomial p* E Pm + n_ 1 is a best uniform approximant
off on B p iff there is an associated extremal signature S with support

D = {(w;, Z; ); i = 1, 2, ..., k} (2)

and relation (1), such that D is included in the set E of extreme points
{(w,z)EBp ; le*(w,z)I=lle*ll; e*=f-p*} with S(w;,z;)=sgne*(w;,z;).

On the other hand, one has the following uniqueness result.

THEOREM 3. All best approximations agree on the set D given by (2).

Proof The relation (1) can be written

k

L Is;1 sgn e*(w;, z;) p(w;, z;) = 0,
;=1

all PEPm + n - l • (3)

If PE Pm + n _ 1 denotes another best approximation of f, i.e., Ilell =
Ilf - pll = Ile* II, (3) becomes for p = p - p* = e* - e,

k k

L: Is;1 sgne*(w;, z;)e*(w;, z;}= L Is;1 sgne*(w;, z;)e(w;, z;).
;~I ;=1

The left side is equal to Ile*11 whereas the right side can be bounded
according to

k k

L Is;1 sgn e*(w;, z;) e(w;, z;) ~ L Is;lle(w;, z;)1 ~ Ileli.
i= 1 i=l

Therefore, since Ilell = Ile*11 and s;~O for all i, we successively deduce
sgn e(w;, z;) = sgn e*(w;, z;} and le(w;, z;)1 = le*(w;, z;)l, that is,
e(w;, z;}=e*(w;, z;) or p(w;, z;)= p*(w;, z;) for i= 1, 2, ..., k. I

An immediate consequence is the following corollary.

COROLLARY 1. If p* is a best approximation off out of Pm + n_ I' with
the support (2) of the associated signature S, every best aproximation can be
decomposed as p* + p where pEPm+ n_ 1 vanishes at all points of D

PEPm+n-1> p(w;, z;) = 0, 1~ i~k. (4)
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Of course, we get a sufficient condition for uniqueness of the best
approximation if 0 is the only element of Pm + n _ 1 satisfying (4): S is then
called a strong extremal signature [8].

3. PROBLEM A: THE REAL CASE

Theorem 1 can be proved in a very concise way.

Proof of Theorem 1. Univariate Chebyshev polynomials of the first kind
satisfy

so that

kn
Xk = cos -,

m

jn
y·=cos -,

J n O~j~n

m

L" (- l)k xi = 0,
k=O

n

L" (- I)J yJ = 0,
J=O

O~h<m

O~l<n,

where 2:" indicates that the first and last terms are halved.
Consequently, we get for the bivariate polynomial Tm(x) Tn(y), the

extremal values Tm(xd T n ( y) = ( _1)k +J, together with the relation

min(h-m,l-n)<O. (5)

Hence the set of extreme points of Tm(x) Tn(y)

E= {(Xb YJ); O~k~m, O~j~n} (6)

is the support of an extremal signature for Qm,n with the corresponding
signs (- 1)k +J and the proof is completed by virtue of Theorem 2. I

In fact, the extremal signature whose support is (6) is primitive for the
space Pm + n _ 1 of bivariate polynomials of degree m +n - 1, In other
words, E belongs to some classes of minimal H-sets for Pm + n _ 1 which
have been enumerated in [17]. To prove this result, we need Noether's
fundamental theorem of algebraic plane curves theory [18, 19] that we
give in its simplest statement.
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THEOREM 4 (Noether's Theorem). Let itEPI" VEP v define two
algebraic curves it(x, y) = 0, v(x, y) =°having no common component and
J1 v distinct intersection points (Xi' Y i)' i = 1, 2, ..., J1 v. The curve p(x, y) = 0
related to a third polynomial PEP,,, will pass through all points (Xi' Yi)
(l ~ i ~ J1 v), iff p has the form p = u it + v v with u E P (J _ 1" V E P (J - v·

With the aid of Noether's theorem, we establish

THEOREM 5. The set E given in (6), is the support of a primitive extremal
signature for Pm + n- 1 •

Proof In case of n = 0, E consists of m + 1 collinear points with
alternating signs, which are well-known supports of primitive extremal
signatures for Pm ~ I'

For n of. 0, as we deal with the real case, the theorem is true if the space

V = span {[1 x y ... ym+n-I] E R(m+n+ l)(m+n)/2; all (x, y) E E}

has dimension card E - 1 [17].
If we consider the space of polynomials vanishing at the points of E

w= {PEPm+ n_ l , p(x, y)=O, all (x, y)EE},

we obtain its dimension by

dim W = dim Pm + n _ 1 - dim V.

Since E is the complete intersection of the two algebraic curves

(7)

(8)

m

it(x, y)= TI (x-xk)=O,
k~O

n

v(x, y)= TI (y- yj)=O,
j~O

(9)

Noether's theorem asserts that all elements of W can be written p = u it + v v
where u and v are arbitrary polynomials of degree n - 2 and m - 2, respec
tively. The modular law for the sum of spaces thus yields

dim W = dim Pn_ 2 + dim Pm - 2'

Equating (8) and (10), we get

= (m +n + l)(m + n)/2 - n(n -1)/2 -m(m -1)/2,

or, by an easy transformation

dim V = (m + l)(n + 1) - 1 = card E - 1. I

(10)



BIVARJATE CHEBYSHEV POLYNOMIALS

We now turn to the question of uniqueness and prove
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THEOREM 6. The best approximation to Xnyn, m +n ~ 1, m ~ n, on U out

of Pm + n_ 1 is unique if n = 0 or n = m.

Proof By Corollary 1, every optimal error has the form

(11 )

where p vanishes at all points of the set E given by (6).
In case of n = 0, E may be defined for all y E [ -1, + 1] as (xb y),

xk=coskn/m, k=O, 1, ...,m}. Writing p(x,Y)=L7'~-olai(x)/ where ai
has degree m - 1 - i, we get ai(xk) = 0, k = 0, 1, ..., m, i.e., ai= 0, for
i = 0, 1, ..., m - 1. Hence, p is the zero polynomial.

For n =I- 0, P which belongs to the space W defined in (7) may be
expressed by p=uu+vv, UEPn_ 2 , VEPm_ 2 , where, by (9), u and v are

m

u(x,y)= n (x-xd=(x 2 -1)m- 1t,;,(x),
k=O

n

v(x, y) = n (y - Yj) = (y2
- 1) n -I T~( y).

j=O

All extrema arising at interior points of U must be stationary points of
(11), which yields U(Xb Yj)=V(Xb Yj)=O for O<k<m and O<j<n.
Applying again Noether's theorem gives u = °and v(x, y) = n -1 T~( y)
q(x, y), q E Pm _ n _ I' To sum up, the best error function is of the form

qEPm- n- ll (12)

so that uniqueness occurs for m = n. I
To state the next theorem dealing with the nonuniqueness case, we trans

form (12) by means of classic relations of Chebyshev polynomials into

rE Pm-n-1 (13 )

in which r is the polynomial q with a different normalization, i.e.,
r=2m- n- 1q.

THEOREM 7. For m > n =I- 0, the function (13) is the error of a best
approximation to xmyn out of Pm+n-1 if the norm Ilrll =
max{lr(x, y)l, (x, Y)E U} OfrEPm+n _ 1 obeys

Ilrll ::::;~. (14)
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Proof Putting x = cos ¢J, Y = cos 0 in (13) yields 2-m- n+ 2g(¢J, 0) with

g(¢J, 0) = cos m¢J cos nO - 2 sin2 nO r(cos ¢J, cos 0), (15)

and this corresponds to an optimal error itT Ig(¢J, 0)1 ~ 1, all (!/J, 0)ER2
.

Taking first a polynomial r of degree 0, i.e., r(x, y) = a, and setting
cos m¢J =a, cos nO =b in g(¢J, 0), we get the function h(a, b) =
a b - 2a( 1- b2), subject to Ih(a, b)1 ~ 1 on the unit square U of the (a, b)
plane. On the boundaries, one has h(a, ± 1) = ±a so that Ih(a, ± 1)1 ~ 1
for lal ~ 1, and h( ± 1, b) = ±b - 2a(1- b2

) which obeys Ih( ± 1, b)1 ~ 1, all
Ibl ~ 1, itT lal ~!. On the other hand, the only stationary point of h(a, b)
is (0,0) so that h(O, 0) = -2 a and Ih(O, 0)1 ~! for lal ~!. We have thus
shown

Icos m¢J cos nO - 2 sin2 nO al ~ 1, all lal ~ !. (16)

If r is a nonconstant polynomial satisfying (14), one has for all
(¢J,0)ER2

, Ir(cos¢J,cosO)I~! and, replacing in (16) a by r(cos¢J,cosO),
Ig(¢J, 0)1 ~ 1, which completes the proof. I

From the above proof, it is worth emphasizing that (14) is both
necessary and sufficient to ensure that (13) is an optimal error for a
constant polynomial r. It is not hard to extend this result when r has
degree 1 so that (13) and (14) characterize the whole set of best errors in
case of m=n+ 1 and m=n+2. For m>n+2, this is no longer true
because condition (14) is only sufficient. For instance, if we choose
r(x,y)=a[T2n(y)-I], by the same kind of procedure that was used in
the proof of Theorem 7, we verify that r corresponds to an optimal error
itT its norm Ilrll is bounded by ~>!.

In [10], Reimer considered the space

Sm,n = {P(X, y) = L ahlxhy', ahlER, h + I~ m + n, (h, I) -# (m, n)}

tEat obeys the inclusions Pm+n-l ~ Sm,n ~ Qm.n' By virtue of Theorem 1,
Tm(x) Tn( y) is also the error of a best approximation on U, of xmyn out of
Sm,n, but, in this case, nonunicity occurs even for m = n. Indeed, by the
foregoing arguments, we obtain, for m = n, the set of best errors

lal, IPI ~!.
(17)

This expression contains the particular solution obtained by Buck in [1].
He showed that, on the square U' = {O ~ X ~ 1, °~ y ~ 1}, the function
XY has among those polynomials of the form p(X, Y) =
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ao+al(X+ Y) + a2(X2+ y2), infinitely many polynomials of best
approximation, given by

where

fl(X, Y) = !(X2+ y 2) - L
fAX, Y) = X + Y - Hx2+ y2) - !.

Performing the change of variables X = (x + 1)/2, Y = (y + 1)/2, to get the
unit square U of the (x, y)-plane, we can rewrite the error of (18) as

which is (17) for n = 1 and r:t.. = p, multiplied by ! since U' is one-fourth of
the unit square U of the (X, Y)-plane.

4. PROBLEM B: THE COMPLEX CASE

It is well known [12, 15], that the normalized Chebyshev polynomial
Tn(z) = 21

- nTn(z) is the monic polynomial of degree n, having the smallest
uniform norm on the ellipse Ep = {z = z(t) = (t + t- I )/2, It I= P, 1< P < 00 }

and, consequently, on the closure of the inside of Ep • Indeed, the set E of
extreme points of Tn(z) is {Zj=z(tJ, tj=pexp(ijn/n), j=O, 1, ...,2n-l}
such that Tn(zJ = (-1)j II Tnll with II Tnll = (pn + P-n)/2. As E is the support
of an extremal signature for the space of univariate polynomials of degree
n -1, with

2n-1

L (- l)j Z) = 0,
j~O

O~l~n-l,

the optimality of Tn(z) follows from the characterization theorem.
In the bivariate case, we obtain an immediate equivalent to Theorem 1.

THEOREM 8. In the uniform approximation on the biellipse Bp = E~ of the
function f( w, z) = wmzn, out of the space

where L' denotes summation over any finite collection of pairs of integers
(h, l) with min(h - m, 1- n) < 0, one has IIf - pll ~ II Tmnil for all pE Qm n'
where Tm,n(w, z) = Tm(w) Tn(z). ' ,
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Proof As indicated above, one has

W k = ~ (peik1t/m + p -le -ik1t/m), k = 0, 1, ..., 2m - 1, (19)

together with

2m-I

L (- 1)k wZ = 0,
k~O

2n-1

L (- 1)j Z~ = 0,
j~O

j=O, 1, ... , 2n-1,

O~h<m,

O~l<n.

(20)

Therefore, one gets Tm.n(wb Zj) = (_1)k+j ll Tm,nll with II Tm,nll = II Tmlill Tnll
and

2m-12n-1

L L (-1)k+jwZZ~=0,
k~O j~O

min(h-m,l-n)<O.

The desired conclusion follows from Theorem 2, in which Pm + n _ 1 is
replaced by Qm.n· I

As wmzn- Tm(w) Tn(z) is an element of Pm + n_ I' which is a subspace of
Qm,n, it also solves Problem B. In fact, it is the unique best approximation
in conditions identical to those of the real case.

THEOREM 9. The best approximation to wmzn
, m + n ~ 1, m ~ n, on Bp'

out of Pm + n_ 1 is unique if n = 0 or n = m.

Proof In view of Corollary 1, all best errors

are such that P(Wb Zj) =0 where Wk (0 ~k ~ 2m -1) and Zj (0 ~j~ 2n -1)
are defined in (19) and (20).

For n = 0, one has P(Wb z) = 0, k = 0, 1, ..., 2m -1, for all ZE E p • From
p(w, z) = 2:;:-01ai(w) Zi where ai is a polynomial of degree m -1 - i, one
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deduces a,(wd=O, k=0,1, ...,2m-l; hence a,=O for i=O,I, ...,m-l,
i.e., p=O.

For n i= 0, p must vanish at all intersection points of the two curves

Applying Noether's theorem stated in the complex field, we obtain p =
uU+ iJ v, UE Pn_m_ I' VE Pm _n_ I' As n ::::; m, this yields U=°and the set of
optimal errors

[
P2n+p-2n]

- - 1 2Tm(w) Tn(z) +2 - n T2n(z) - 2 v(w, z), VEPm_n_1> (21)

which is a singleton for m = n. I
In contrast with the real problem, the polynomial v in (21) must obey

stringent conditions in case of nonuniqueness. For further convenience, we
set, for k E Z, tk = (pk + P-k)/2, Uk = (pk - P-k)/2, and establish

THEOREM 10. For m > n i= 0, if the function 22
- m- y(w, z) with

(22)

is an optimal error related to Problem B, for some polynomial q of degree
d::::; m - n - 1, then q has necessarily the form

where IX E Rand

{

IX,

q(w, z) = IX + r(z),

IX + r(z) + s(w, z),

d<n,
n::::;d::::;2n,

d>2n,

(23)

( ) _ T ( )+d~n Tn+i(z) + d~n T1n-il(z)
r z - lXo n Z L. lXi L. lXi

i=1 un+ j i~l.i"'n un- j

+ 1· d~n Pl. [Tn+i(Z) Tln-il(Z)], P R
L..., lXo, lXi' i E ,
i~1 tn +i tn - i

S(W, Z)= [T2n(z)-t 2n J W t(W, Z), tEPd- 2n - l .

The following lemma is needed.

(24)

(25)
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LEMMA 1. In order that 22- m- nf(w, z) be an optimal error, q must be
real-valued at all extreme points of Tm(w) Tn(z) on B p , i.e., q(Wb zj)ER,
0~k~2m-I,0~j~2n-I,where Wk and Zj are defined in (19) and (20).

Proof Denoting the points (w, z) on B p by

t I cos fJ + i u I sin fJ,

o~ ¢J ~ 2n,

we get

Tm(w) = tmcos m¢J + i Umsin m¢J,

Tn(z) = tncos nfJ +i Un sin nfJ,

and

T2n(z) - t 2n = 2 sin nfJ( - t 2n sin nfJ + i U2n cos nfJ).

Therefore, if ql(¢J, fJ) and q2(¢J, fJ) are the real and imaginary parts of q on
Bp , we obtain by straightforward computations the square modulus offon
Bp as

F(¢J, fJ) = (t~ - sin2 m¢J)(t~ - sin 2 nfJ)

+4 sin nfJ[ql(¢J, fJ)fl(¢J, fJ)+ q2(¢J, fJ)f2(¢J, fJ)]

+4[qi(¢J, fJ) + q~(¢J, fJ)] sin2 nfJ(t~n - cos 2 nfJ), (26)

where

fl (¢J, fJ) = -tmtncos m¢J sin nfJ cos nfJ +UmUnsin m¢J(t2n +cos2nfJ),

f2(¢J, fJ) = -tmuncos m¢J(t2n + cos2 nfJ) - Umtnsin m¢J sin nfJ cos nfJ.

Since the set of optimal errors is characterized by F(¢J, fJ) ~ t~t~,

all (¢J, fJ)ER 2
, the points (¢Jk = kn/m, fJj=jn/n), k=O, 1, 00" 2m-I,

j=O,1,oo.,2n-l, such that F(¢JbfJj)=t~t~, must be stationary points
of F. One easily verifies that F ¢>( ¢Jk' fJj ) = 0 and F()( ¢J b fJj ) =
(_l)k+ j + I 8ntmt~unq2(¢Jb fJj ). Hence, a necessary condition for optimality
isq2(¢Jb fJj)=0. I

We now turn to the proof of Theorem 10.
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Proof of Theorem 10. Considering first a univariate polynomial q(z) of
degree d, we expand it into a Chebyshev series

d

q(z)= L (a,+ib,) T,(z),
'=0

to get, for z = t 1 cos 8 + i U1 sin 8,

d d

1m q(z) = F(8) = I bit, cos /{} + L a,u, sin /{}; (27)
'=0 '~I

that is, a trigonometric polynomial of order d, which must vanish at
8j = jn/n, j = 0, 1, , 2n - 1. In case of d < n, F(8) is thus identically zero,
which gives al = =ad=bo= ... =bd=O so that q(z) is a real constant.
For d~ n, it is easy to see that F(8) must contain the factor sin n8

F(8) = sin n8 Ct~ Chcos h(} + :t~ dhsin h8)'

which, by simple trigonometric transformations, becomes

1 d-n

F(8) = Co sin n8 +2 L {ch[sin(n +h)8 +sin(n - h)8]
h=1

+ dh[cos(n - h)8 - cos(n + h)8]}. (28)

Finally, identifying (27) and (28) shows that q may be expressed according
to (24).

If q is a bivariate polynomial of degree d, one has q( w, z) =2:.1~ 0 A,(z) w'
where A, is of degree d - 1 in z, such that 1m q( wb Zj) = ° for
k=0,1, ...,2m-1 and j=O, 1, ...,2n-1. As d~m-n-l<m, by the
foregoing argument, the 2n univariate polynomials of degree d, qj(w) =
q(w, Zj) (0~j~2n-l), that obey 1m qj(wd=O, 0~k~2m-l, must be
real constants. Hence, we obtain for 1= 1, 2, ... , d, A,(zj) = 0, °~j ~ 2n -1,
i.e., A,(z) = [T2n(z) - t 2n ] B,(z), where the polynomial B, has degree
d -1- 2n. To conclude, q is a univariate polynomial in z for d ~ 2n,
whereas it is the sum of this polynomial and the bivariate polynomial (25)
for d>2n. I

It is very hard to obtain precise bounds on the norm of the various
admissible polynomials q, mentioned in Theorem 10. Yet, when q(w, z) =
a E R, we get the following

THEOREM 11. For m > n # 0, the function 2 2- m - nf(W, z) with

()(ER, (29)
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is an optimal error for Problem B, iff

(30)

(31)

(32)

Proof Putting ql = a, q2 = 0 in (26) yields the square modulus off as

F(rjJ, 0) = (t~ - sin 2 mrjJ )(t; - sin 2 nO)

+4 a sin nO [ - tmtncos m¢J sin nO cos nO

+UmU nsin m¢J(t2n +cos 2 nO)]

+ 4 a2 sin2 nO(t~n - cos 2 nO),

so that the best errors are characterized by F(¢J, 0) ~ t~ t~ for all (¢J, 0) E R2
•

By the proof of Lemma 1, we know that, at (¢Jb OJ) =
(knlm,jnln),F(rjJbOJ=t~t~ and F¢>(¢Jb OJ) = FO(¢Jb OJ)=O. Hence,
F(¢Jb OJ) will be a local maximum iff the Hessian matrix of F is negative
definite at (¢Jb OJ)' We compute F¢>¢>(¢Jb OJ) = -2m2t~ < 0 and the determi
nant of the Hessian matrix at (¢Jk, OJ)

4 m2n2t2 t2[1 + (_1)k + j 4a~ - 4a2u2 ]m n t
m

2n ,

or

H:: [-(-I)k+j+(1+4t~U~)1/2]-I-a},

which is nonnegative for all (k, j) iff condition (30) is satisfied.
It remains to prove that the points (¢Jk, OJ) are also global maximum

points of Ffor lal~A, i.e., G(¢J,O)=t~t~-F(¢J,(})~O, for all (¢J,(})ER2

and lal ~ A. Due to the apparent symmetry of G, it suffices to consider
the values nl2 ~ m¢J ~ n, 0 ~ n() ~ nl2 or, introducing the variables
A= m¢J - n12, (J = nO, the square [0, nI2]2, such that G becomes

g(A., (J) = t~ sin 2 A. + t~ sin 2 (J - sin 2 A. sin 2 (J

- 4 a sin oDmtncos Acos (J sin (J + Urn Un sin A(2t~ - sin2
(J)]

- 4 a 2 sin 2 (J(u~n + sin 2 (J).
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Clearly, one has g(A, O")~O, for all lal ::::;A, iff g(A, 0") is nonnegative for
a = A. Therefore, putting a = A in g and using, by (3.2), the relation

we obtain, by direct computations, the decomposition g = g 1 + g2, where
g 1 is the nonnegative function

gl(A, 0") = [tn(Sin ,1.- 4Aumunsin 0") - 2~n sin Asin 2 0"J,
whereas g2(A, 0") = sin 2 0" h(A, 0") such that the function h written in the
variables u = cos A, v = cos 0", is

h(A, 0") = H(u, v) = 4Atmtn(l- u v) - 4A 2(l- v2)

1 2 2--(I-u )(1-v). (33)
4t~

The proof is this completed if one has H(u, v) ~ 0 for all (u, v) E [0, 1Y On
the edges of the square [0,1]2, one finds H(u, 1)=4Atmtn(l-u)~0,
H(I, v) = 4A(I- v)[tmtn - A(1 + v)] ~ 4A(l- v)(tmtn - 2A) ~ 0, H(u, 0) ~
H(O, 0), H(O, v) ~ H(O, 0) and it is shown in Appendix that H(O, 0) > O. On
the other hand, the stationary points of H are solutions of

Eliminating u from both equations, we get

v [(1- V
2

)2 - A2:A(2;;2)_1 ] = O.

The first factor of the left side yields v = 0, hence u = O. The second factor
cannot vanish for 0::::; v::::; 1, because one has (1 - V2)2::::; 1, and, as shown in
Appendix,

4A 2 2 4 A2 1tmtn> +-12'6tn

(34)

Consequently, there is no interior stationary point of H in [0, 1] 2 and the
theorem is established. I
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Combining Theorems 10 and 11, we conclude that (29) and (30) charac
terize the set of optimal errors for Problem B in case of 2n + 1> m > n > O.
For m ~ 2n + 1 > 1, there exist other forms of optimal errors. For instance,
if the polynomial q in (22) is given by CXoTn(z), CX o E R, it can be shown by
a lengthy proof, similar to that of Theorem 11, that it corresponds to best
errors iff Icxol ~ (tm/2t~)[t2n + (t~n + 4t~U~)1/2] -I.

As p --+ 1, the biellipse Bp collapses to the unit square V = [ -1, +1]2
and, by (30), one has A --+ ~ in accordance with (14). As p --+ CXJ, the
difference between the semi-axes of E p tends to zero. In fact, on the bidisk,
like in the univariate case [2, p. 146], we can prove by an argument based
on the maximum modulus theorem: 0 is the unique best uniform approxima
tion to wmzn, out of P m + n- I , on the bidisk {(w,z)eC2, Iwl~R, Izl~R,

R > O}. Except for the uniqueness, this is also a consequence of a result by
Reimer [11].

APPENDIX: PROOF OF Two INEQUALITIES

1. H(O, 0) > O. From (33), H(O, 0) is given by

2 1
H(0,0)=4Atmtn-4A --42 '

t n

(35)

and can be factorized as

H(O,O)=[(t~t~- 4~~Y/2 +tmtn-2AJ[(t~t~-4~~Y/2-tmtn+2A1
in which the first factor is positive since tm tn > 2A. In order to check the
positivity of the second factor

(
1 ) 1/2 1 [ ( 1 ) 1/2J - 1

2A > tmtn - t~t~ - 4t~ = 4t~ tmtn+ t~t~ - 4t~ ,

we use definition (30) of A to get the inequality

1+ (l + 4t~ u~)1/2 < 4t~ t~ + (l6t~ t: - 4t~)1/2,

which is satisfied if 1 + 4t~u~ < 16t~t: - 4t~ or, by u~ = t~ - 1, if
4t~ t~(2t~ t~ - 1) + (8t~ t: - 1) > O. The last inequality is an evidence since
the left side is the sum of two positive terms.

2. Inequality (34). Since H(O,O»O, (35) yields Atmtn>A2+1/16t~.

Therefore, inequality (34) is true if4A2t~t:~Atmtn or (4Atn/tm)t~t~~1.

By definition (30) of A, we get 2t~t~-I~(1+4t~u~)1/2 and, squaring
both members, t~t:-t~t~~t~u~. Using the relations u~=t~-I, u~=

t~ - 1, we finally obtain u~ t: + (t~ - 1)2 ~ O.



BIVARIATE CHEBYSHEV POLYNOMIALS

REFERENCES

337

1. R. C. BUCK, Linear spaces and approximation theory, in "On Numerical Approximation"
(R. F. Langer, Ed.), Univ. of Wisconsin Press, Madison, 1959.

2. P. J. DAVIS, "Interpolation and Approximation," Ginn (Blaisdell), Waltham, 1963.
3. H. EHLlCH AND K. ZELLER, Chebyshev-Polynome in Mehreren Veranderlichen, Math. Z.

93 (1966), 142-143.
4. J. FROMM, Lt-Approximation to zero, Math. Z. 151 (1976), 31-33.
5. W. B. GEARHART, Some Chebyshev approximations by polynomials in two variables,

J. Approx. Theory 8 (1973), 195-209.
6. R. C. GUNNING AND H. ROSSI, "Analytic Functions of Several Complex Variables,"

Prentice-Hall, Englewood Cliffs, NJ, 1965.
7. W. HAUSSMANN AND K. ZELLER, Mixed norm multivariate approximation with blending

functions, in "Constructive Theory of Functions, 84" (B. Sendov et al., Eds.), pp.403-408,
Bulgarian Academy of Sciences, Sofia, 1984.

8. D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Chebyshev approximation, Duke
Math. J. 30 (1963), 673-682.

9. M. REIMER, On multivariate polynomials of least deviation from zero on the unit ball,
Math. Z. 153 (1977), 51-58.

10. M. REIMER, On multivariate polynomials of least deviation from zero on the unit cube,
J. Approx. Theory 23 (1978), 65--69.

11. M. REIMER, Extremal bases for normed vector spaces, in "Approximation Theory III"
(E. Cheney, Ed.), pp. 723-728, Academic Press, 1980.

12. T. J. RIVLlN, ''The Chebyshev Polynomials," Wiley, New York, 1974.
13. T. 1. RIVLlN, The best strong uniqueness constant for a multivariate Chebyshev polyno

mial, J. Approx. Theory 41 (1984), 56--63.
14. H. S. SHAPIRO, Some theorems on Chebyshev approximation II, J. Math. Anal. Appl. 17

(1967), 262-268.
15. H. S. SHAPIRO, "Topics in Approximation Theory," Lecture Notes in Math., Springer

Verlag, Berlin, 1971.
16. J. M. SLOSS, Chebyshev approximation to zero, Pacific J. Math. 15 (1965), 305-313.
17. J. P. THIRAN AND P. DEFERT, Weak minimal H-sets for polynomials in two variables,

SIAM J. Numer. Anal. 19 (1982), 1041-1050.
18. J. P. THIRAN, P. DEFERT, AND E. PANIER, On H-sets in bivariate rational approximation,

J. Approx. Theory 37 (1983), 356-371.
19. R. J. WALKER, "Algebraic Curves," Springer Pub., New York, 1978.

640/59/3-7


